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IAS Computer 

Instructions 

The IAS computer was designed in the 1940's and built in the early 1950's by 
John von Neumann at the Princeton Institute for Advanced Studies. It can 
arguably be called the father of all modern computers in that it was one of the 
first computers which stored both the program and the data in the computer's 
memory and it was used as a prototype for many of the computers developed 
in the 1950's, including the IBM family of computers. The IAS has an 
accumulator register, AC, and an arithmetic register, AR, to store the results of 
operations. Each register has 40 bits. There is a memory (RAM) 
called Selectron that has up to 4096 (that is, 2

12
) 40-bit memory locations—

words. There are also several other registers that are used internally by the 
computer but are invisible to the machine-language programmer. 
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The IAS machine language instructions are 20 bits long and have the 
following form:op-code memory-address, where op-code is an 8-bit operation 
code and memory-address is a 12-bit memory address. The table above lists 
the complete IAS instruction set. There are 22 machine instructions for the 
IAS computer, each associated with an 8-bit op-code, as shown in the table 
below. Note that the opcode is given in decimal but, of course, is stored in the 
computer in binary. Note also that not all instructions require a memory 
address, in which case the last 12 bits of the instruction are ignored. 

For example, the machine language statement 0000001 0000000001110 says to 
get the data in Selectron memory location 14 and load it into the AC. 

Since each addressable cell in memory (each word) contains 40 bits, two 
instructions fit in each word of memory. If the word is used to store data 
instead of instructions, then all 40 bits are used to store one data value. 

 

Data Path 

Below is the diagram of the CPU data paths for the IAS computer. This comes 
from Stallings 2010; the register labeled MQ is the register we have been 
calling AR (arithmetic register). 
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1.2.2  INSTRUCTION INTERPRETATION CYCLE 

Interpretation of an instruction proceeds in three steps or cycles. The instruction is fetched, 

decoded, and executed. These three steps are discussed in the following sub sections. 

Instruction Fetch  

A partial flow chart for the instruction fetch cycle is shown in Figure 1.6. Because two 

instructions are fetched at once, the first step is to determine if a fetch from memory is required. 

This test is made by testing the least-significant bit (LSB) of the program counter. Thus, an 

instruction fetch from memory occurs only on every other state of the PC or if the previous 

instruction is a taken branch. The fetch from memory places a left (L) and a right (R) instruction 

in the instruction buffer register (IBR). 

Instructions are executed, except for the case of a branch instruction, left, right, left, right, etc. 

For example, consider that an R instruction has just been completed. 

  

 Figure 1.6 Instruction fetch cycle 
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There is no instruction in the IBR and a reference is made to memory to fetch an instruction pair. 

Normally, the L instruction is then executed. The path follows to the left, placing the instruction 

into the instruction register (IR). The R instruction remains in the IBR for use on the next cycle, 

thereby saving a memory cycle to fetch the next instruction. 

If the prior instruction had been a branch to the R instruction of the instruction pair, the L 

instruction is not required, and the R instruction is moved to the IR. In summary, the instruction 

sequence is as follows: 

Sequence    Action 

L followed by R   No memory access required 

R followed by L   Increment PC, access memory, use L instruction 

L branch to L   Memory access required and L instruction used 

R branch to R  Memory access required and R instruction used 

L branch to R   If in same computer word, memory access not required 

R branch to L   If in same computer word, memory access not required 

  

After the instruction is decoded and executed, the PC is incremented for the next instruction and 

control returns to the start point. 

Decode and Execute 

Instruction decode is only indicated in Figure 1.6. However, the instruction has been placed in 

the IR. As shown in Figure 1.7, combinatorial logic in the control unit decodes the op-code and 

decides which of the instructions will be executed. In other words, decoding is similar to the 

CASE statement of many programming languages. The flow charts for two instruction 

executions are shown in Figure 1.7: numbers 21 and 6. After an instruction is executed, control 

returns to the instruction fetch cycle, shown in Figure 1.6. 
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Figure 1.7 Decode and execute 

The sequencing of the instruction interpretation cycle is controlled by a hardwired state machine, 

discussed in Chapter 5. Each of the states is identified in flowchart form, flip flops are assigned 

to represent each state, and the logic is designed to sequence through the states. After the 

invention of microprogramming, the flow chart is reduced to a series of instructions that are 

executed on the micromachine. In other words, a second computer, rather than a hardwired state 

machine, provides the control. 

Addressing Modes & CPU Internals 

 In the following descriptions I will use a hypothetical 3-operand ADD 
instruction: 

ADD Dest, Src1, Src2 

and use different addressing modes for Src2. 
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 Note that I am ignoring the Src1 and Dest operands. These, too, could use any 
of the following addressing modes. 

Immediate Addressing 

ADD Dest, Src1, literal value 

 The operand's value is encoded in the instruction as a literal value. 
 It may be treated as signed or unsigned depending on the instruction. 
 MIPS example: addi $t1, $t2, 100 
 Literal values are known on some architectures as immediate values. 

Register Mode 

ADD Dest, Src, Register 

 A register number is specified in the instruction; the operand's value comes 
from the register. 

 MIPS example: add $t1, $t2, $t3 

Absolute or Direct Mode 

ADD Dest, Src, memory address 

 The instruction encodes a memory address; the operand's value is loaded 
from that address. 

 Note that most RISC ISAs only provide memory addressing for load & store 
instructions. 

 CISC ISAs usually allow memory addressing for many instructions. 
 MIPS example: lw $t1, 5000 

Register Indirect Mode 

ADD Dest, Src, (Register) 

 The instruction encodes a register number. 
 The value in the register is treated as an address; the operand's value is 

loaded from that address. 
 The register is effectively a pointer: instead of holding a value, the register 

points at the location in memory where that value exists. 
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 MIPS example: lw $t1, ($t2) 
 The idea of a pointer is used in many languages to create dynamic data 

structures, e.g. linked lists. 
 In Java, a linked list of ints can be created with: 
     public class IntList 

     { 

        private int     x; 

        private IntList next; 

     } 

  

although the next variable is strictly a reference, not a pointer: Java stops you 

from seeing the address. 

 In C, we can do: 
     struct IntList 

     { 

       int             x; 

       struct IntList *next; 

     } 

  

and the next variable is a pointer which holds an address and which is directly 

visible to the programmer. 

Indexed Absolute Mode 

ADD Dest, Src, base(Register) 

 The instruction encodes a literal value, the base, and a register number. 
 The literal value, with the register's value added, is treated as an address; the 

operand's value is loaded from that address. 
 The register is known as an index register. 
 MIPS example: lw $t1, 300($t2) 
 This allows the low-level implementation of arrays. 
 Assume that an array of 25 characters, name[], is stored starting at memory 

address 50 onwards. 
 The character name[0] is stored at location 50, name[1] at 51, name[2] at 52 etc. 
 A program can loop with register Rn going from 0 up to 24. 
 The operand    50(Rn)    would access each of the characters in the array 

from position 0 up to 24. 
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 Note that, for arrays of different type sizes, e.g. 32-bit ints, the index register 
has to be incremented by the byte size of the elements (i.e. 4) each time 
through the loop. 

 This addressing mode is useful when the array is fixed in memory: for 
example, it is a global array defined at compile time. 

 The rest of the addressing modes below are seen mainly on CISC architectures. 

Base plus Offset Mode 

ADD Dest, Src, BaseRegister(offset) 

 This time, the offset is the fixed literal, and the base of the data structure is 
obtained from a register. 

 This addressing mode is useful to access specific fields of a structure or object. 
 Consider a structure of different-sized fields, e.g. a C struct: 
     struct Student 

     { 

       int id;          # 32-bit value 

       short age;       # 16-bit value 

       char gender;     # 8-bit value 

     } 

  

 The id field is at offset 0 in the struct, the age field is at offset 4, and 
the gender field is at offset 6. 

 Imagine you have a Student struct variable s1, and you want to set the age in 
the struct to 23: 

     s1.age = 23; 

  

 If register R5 (playing the role of s1) points at the base of the struct, then the 
following would do the work: 

     StoreHalfword R5(4), 23 

  

as we know the age field is 4 bytes from the address that R5 points to. 

Base plus Index Mode 

ADD Dest, Src, BaseRegister(IndexRegister) 

 Instead of encoding the base as a fixed literal value, the base value comes 
from a register. The values of the two registers are added together to form the 
address of the value to access. 
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 The base register is effectively a pointer to some data structure like an array, 
and the index pointer is the index into that array. 

 This is useful when the data structure's location is not defined at compile-
time, but is created at run-time by the program: 

o the structure might be a local variable, created when the function 
starts. 

o the structure might be dynamically allocated, e.g. with C's malloc() or 
Java's new operator. 

 Assuming that the base register points at the base of the structure, this 
addressing mode can access the fields or elements in the structure. 

Base plus Index plus Offset Mode 

ADD Dest, Src, BaseRegister(IndexRegister)offset 

 The instruction encodes two registers and a literal value which is the offset 
 The values of all three are added together to form the address of the value to 

access. 
 This addressing mode is useful when there is an array of structs/objects, and 

you want to access a specific field within one of the objects, e.g. 
     studentlist[57].age = 23; 

  

 The base register would point at the base of the array, the index would hold 
57 * sizeof(Student), and the offset would be the offset of the age field from 
the base of each struct/object. 

Register Pre-increment/Pre-decrement Mode 

ADD Dest, Src, +Register or -Register 

 The value in the register is pre-incremented or pre-decremented before it is 
used. 

 This mode often appears in combination with the other addressing modes 
above. 

 Used in many 1960s and 1970s ISAs, its use on the PDP-11 CPU inspired the 
pre-increment & pre-decrement operators in C, which have been adopted by 
its decendants like Java, i.e. ++x; 
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Register Post-increment/Post-decrement Mode 

ADD Dest, Src, Register+ or Register- 

 The value in the register is incremented or decremented after it is used. 
 This mode often appears in combination with the other addressing modes 

above. 

Memory Indirect Mode 

ADD Dest, Src, (memory address) 

 The value at the given memory address is fetched, and this is used as a pointer 
to the actual memory location. 

 If you ever get to write a substantial amount of C programming, you will see 
this in action as a pointer to a pointer. 

 As shown above, there is a single indirection: fetch the value to get the 
address, fetch the value at that address. 

 On some systems, e.g. the PDP-10 minicomputer, the word size (i.e. data bus 
size) was much bigger than the address bus size, so there were extra bits left 
over in each word which were not needed as an address. 

 One specific bit in a word was treated as an indirect bit: 
o if it was set, then the CPU would treat the value as another address, 

and go and fetch the value at this address. 
 This implies that you could chain addresses: one address could point at 

another one, which could point at a further one etc. 
 One prank was to set the indirect bit in a word in memory, and put the 

address of that word in the word itself. 
o Accesses to this location would cause the CPU to go into an endless 

loop of indirections. 
o On some implementations of the PDP-10 ISA, this would lock the CPU 

up hard, and it would need to be powered down to fix the problem. 

Data Transfer & Manipulation 

Computer provides an extensive set of instructions to give the user the 

flexibility to carryout various computational task. Most computer instruction 

can be classified into three categories. 
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(1)    Data transfer instruction 

(2)    Data manipulation instruction 

(3)    Program control instruction 

Data transfer instruction cause transferred data from one location to another 

without changing the binary instruction content. Data manipulation instructions 

are those that perform arithmetic logic, and shift operations. Program control 

instructions provide decision-making capabilities and change the path taken by 

the program when executed in the computer. 

(1) Data Transfer Instruction 

Data transfer instruction move data from one place in the computer to another 

without changing the data content. The most common transfers are between 

memory and processes registers, between processes register & input or output, 

and between processes register themselves 

(Typical data transfer instruction) 

Name Mnemonic 

Load LD 

Store ST 

Move MOV 

Exchange XCH 

Input IN 

Output OUT 

Push PUSH 

Pop POP 

(2) Data Manipulation Instruction 

It performs operations on data and provides the computational capabilities for 

the computer. The data manipulation instructions in a typical computer are 

usually divided into three basic types. 

(a)    Arithmetic Instruction 

(b)    Logical bit manipulation Instruction 

(c)    Shift Instruction. 
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(a) Arithmetic Instruction 

Name Mnemonic 

Increment INC 

Decrement DEC 

Add Add 

Subtract Sub 

Multiply MUL 

Divide DIV 

Add with Carry ADDC 

Subtract with Basses SUBB 

Negate (2’s Complement) NEG 

(b) Logical & Bit Manipulation Instruction 

Name Mnemonic 

Clear CLR 

Complement COM 

AND AND 

OR OR 

Exclusive-Or XOR 

Clear Carry CLRC 

Set Carry SETC 

Complement Carry COMC 

Enable Interrupt ET 

Disable Interrupt OI 

(c) Shift Instruction 

Instructions to shift the content of an operand are quite useful and one often 

provided in several variations. Shifts are operation in which the bits of a word 

are moved to the left or right. The bit-shifted in at the and of the word 

determines the type of shift used. Shift instruction may specify either logical 

shift, arithmetic shifts, or rotate type shifts. 

Name Mnemonic 

Logical Shift right SHR 

Logical Shift left SHL 

Arithmetic shift right SHRA 

Arithmetic shift left SHLA 

Rotate right ROR 

Rotate left ROL 
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Rotate mgmt through carry RORC 

Rotate left through carry ROLC 

 

Computer Bus Structure 
A bus is a collection of wires that connect several devices within a computer system. When a word 

of data is transferred between units, all its bits are transferred in parallel. A computer must have 

some lines for addressing and control purposes. 

Three main groupings of lines: 

1. Data Bus. This is for the transmission of data. 

2. Address Bus. This specifies the location of data in MM. 

Control Bus. This indicates the direction of data transfer and coordinates the timing of events during 

the transfer. 

 

 

Single Bus Structure 

All units are connected to a single bus, so it provides the sole means of interconnection. Single bus 

structure has advantages of simplicity and low cost. 

Single bus structure has disadvantages of limited speed since usually only two units can participate 

in a data transfer at any one time. This means that an arbitration system is required and that units 

will be forced to wait. 

Only two units can actively use the bus at any given time. Bus control lines are used to arbitrate 

multiple requests for the use of the bus. 

Buffer Registers are used to hold information during transfers. 
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Two Bus Structure 

In the first configuration, the processor is placed between the I/O unit and the memory unit. The 

processor is responsible for any data transfer between the I/O unit and the memory unit. The 

processor acts as a “messenger.” In this structure, the processor performance and capability is not 

being maximized. Most of the time, the processor is doing data transfer between these units instead 

of performing more complex applications. Also, the processor is idle most of the time waiting for 

these slow devices. 

In the second configuration, I/O transfers are made directly to or from the memory. A special 

purpose processor called peripheral processor or I/O channel is needed as part of the I/O equipment 

to control and facilitate such transfers. This special processor is the direct memory access(DMA) 

controller. It allows main memory to perform data transfer between I/O units. 
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MICRO-PROGRAMMED VERSUS HARDWIRED CONTROL UNITS:  

The Basic Computer 

Every student of computer science knows that all traditional digital computers have 

two principal functional parts: the data path section in which processing occurs and 

the control section which is responsible for decoding instructions and leaving the 

correct sequence of control signals to make the processing happen in the data path.. 

Basically there are two types of control units: hard-wired controllers and micro-

programmed controllers. In order to appreciate the difference and see how computers 

really work, we present a very simple computer. A block diagram of its data path 

sections is shown in Figure 1. 

A single 12-bit-wide bus provides for exchange of information between pairs of 

registers within the data path section. The registers and the 256 X 12 bit RAM 

memory are controlled by 16 control signals. Most of the registers have Load (L) and 

Enabled (E) signals. An active L signal to a register causes the contents of the bus to 

be clocked into that register on the next rising pulse from the system clock. An active 

E signal enables the tristate outputs of the register, thereby making its contents 

available to the bus. Therefore, a register transfer from, for example, register A to 

register B would require active EA and LB control signals. 

Processing of data is done by the Arithmetic-Logic-Unit (ALU), a circuit that is 

capable of adding or subtracting the 12-bit numbers contained in its two input 

registers: the accumulator (ACC) and register B. The operation performed by the 

ALU is selected by the Add (A) or Subtract (S) control signals. The accumulator also 

contains a single flip-flop that is set whenever its contents are negative (i.e., whenever 

the leading bit is set--meaning a negative 2's complement number). The value of this 

"negative flag" provides input to the controller/sequencer, and, as we shall see, 

permits implementation of conditional branching instructions. 

The machine's RAM memory is accessed by first placing the 8-bit address in the 

Memory Address Register (MAR). An active Read (R) control signal to the RAM will 

then cause the selected word from the RAM to appear in the Memory Data Register 

(MDR). An active Write (W) signal, on the other hand, will cause the word contained 

in the MDR to be stored in the RAM at the address specified by the MAR. Since there 

are no input or output ports in this simple computer, all I/O is memory mapped. In 

other words, several memory locations are reserved for input/output devices. Memory 

reads from any of those locations will cause data from the corresponding input device 

to appear in the MDR; memory writes to them will cause data in the MDR to be sent 

to the corresponding output device. A word stored in any given memory location may 
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be data to be manipulated by the computer or a coded instruction that specifies an 

action to be taken. 

The data path section also contains a Program Counter (PC) whose function it is to 

point to the address in RAM of the next instruction to be executed. The Increment 

Program Counter (IP) control signal causes the contents of the PC to increase by one. 

Since, as we shall see, instructions on this machine are one word long, this provides a 

simple mechanism for sequential instruction execution. In addition there is an 

Instruction Register (IR) which holds the instruction that is about to be execute and 

provides its opcode to the controller/sequencer.  

  

The Computer's Instruction Set 

An instruction on our simple computer consists of one 12-bit word. The leading four 

bits form the operation code (opcode) which specifies the action to be taken, and the 

remaining 8 bits, when used, indicate the memory address of one of the instruction's 

operands. For those instructions that have two operands, the other operand is always 

contained within the accumulator. 

Table 1 gives eight instructions that form the instruction set we have chosen for our 

machine. Also shown in the table is the sequence of control signals necessary for 

execution of each of the instructions in the machine's instruction set and for fetching 

the next instruction. In each case the register transfers required for execution of each 

step are shown. For example, in the case of the LDA (load accumulator) instruction, 

the first step consists of copying the address of the operand, contained in the least 

significant 8 bits of the instruction register, to the memory address register. Thus the 

EI (enable IR) and LM (load MAR) control signals are active. The next step is to read 

the operand from memory into the memory data register. An active R (memory read) 

signal performs that task. The last step required to execute the LDA instruction is to 

copy the contents of the memory data register to the accumulator. Active ED (enable 

MDR) and LA (load accumulator) do the trick.  

  

The Hard-Wired Control Unit 

Figure 2 is a block diagram showing the internal organization of a hard-wired control 

unit for our simple computer. Input to the controller consists of the 4-bit opcode of the 

instruction currently contained in the Instruction Register and the negative flag from 

the accumulator. The controller's output is a set of 16 control signals that go out to the 

various registers and to the memory of the computer, in addition to a HLT signal that 

is activated whenever the leading bit of the op-code is one. The controller is 



18 
 

Prepared by:- Anwar Bari 

composed of the following functional units: A ring counter, an instruction decoder, 

and a control matrix. 

The ring counter provides a sequence of six consecutive active signals that cycle 

continuously. Synchronized by the system clock, the ring counter first activates its T0 

line, then its T1 line, and so forth. After T5 is active, the sequence begins again with 

T0. Figure 3 shows how the ring counter might be organized internally. 

The instruction decoder takes its four-bit input from the op-code field of the 

instruction register and activates one and only one of its 8 output lines. Each line 

corresponds to one of the instructions in the computer's instruction set. Figure 4 shows 

the internal organization of this decoder. 

The most important part of the hard-wired controller is the control matrix. It receives 

input from the ring counter and the instruction decoder and provides the proper 

sequence of control signals. Figure 5 is a diagram of how the control matrix for our 

simple machine might be wired. To understand how this diagram was obtained, we 

must look carefully at the machine's instruction set (Table 1). Table 2 shows which 

control signals must be active at each ring counter pulse for each of the instructions in 

the computer's instruction set (and for the instruction fetch operation). The table was 

prepared by simply writing down the instructions in the left-hand column. (In the 

circuit these will be the output lines from the decoder). The various control signals are 

placed horizontally along the top of the table. Entries into the table consist of the 

moments (ring counter pulses T0, T1, T2, T3, T4, or T5) at which each control signal 

must be active in order to have the instruction executed. This table is prepared very 

easily by reading off the information for each instruction given in Table 1. For 

example, the Fetch operation has the EP and LM control signals active at ring count 1, 

and ED, LI, and IPC active at ring count 2. Therefore the first row (Fetch) of Table 2 

has T0 entered below EP and LM, T1 below R, and T2 below IP, ED, and LI. 

Once Table 2 has been prepared, the logic required for each control signal is easily 

obtained. For each an AND operation is performed between any active ring counter 

(Ti) signals that were entered into the signal's column and the corresponding 

instruction contained in the far left-hand column. If a column has more than one entry, 

the output of the ANDs are ORed together to produce the final control signal. For 

example, the LM column has the following entries: T0 (Fetch), T3 associated with the 

LDA instruction, and T3 associated with the STA instruction. Therefore, the logic for 

this signal is: 

LM = T0 + T3*LDA + T3*STA 
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This means that control signal LM will be activated whenever any of the following 

conditions is satisfied: (1) ring pulse T0 (first step of an instruction fetch) is active, or 

(2) an LDA instruction is in the IR and the ring counter is issuing pulse 3, or (3) and 

STA instruction is in the IR and the ring counter is issuing pulse 3. 

The entries in the JN (Jump Negative) row of this table require some further 

explanation. The LP and EI signals are active during T3 for this instruction if and only 

if the accumulator's negative flag has been set. Therefore the entries that appear above 

these signals for the JN instruction are T3*NF, meaning that the state of the negative 

flag must be ANDed in for the LP and EI control signals. 

Figure 6 gives the logical equations required for each of the control signals used on 

our machine. These equations have been read from Table 2, as explained above. The 

circuit diagram of the control matrix (Figure 5) is constructed directly from these 

equations. 

It should be noticed that the HLT line from the instruction decoder does not enter the 

control matrix, Instead this signal goes directly to circuitry (not shown) that will stop 

the clock and thus terminate execution.  

  

A Micro-programmed Control Unit 

As we have seen, the controller causes instructions to be executed by issuing a 

specific set of control signals at each beat of the system clock. Each set of control 

signals issued causes one basic operation (micro-operation), such as a register 

transfer, to occur within the data path section of the computer. In the case of a hard-

wired control unit the control matrix is responsible for sending out the required 

sequence of signals. 

An alternative way of generating the control signals is that of micro-programmed 

control. In order to understand this method it is convenient to think of sets of control 

signals that cause specific micro-operations to occur as being "microinstructions" that 

could be stored in a memory. Each bit of a microinstruction might correspond to one 

control signal. If the bit is set it means that the control signal will be active; if cleared 

the signal will be inactive. Sequences of microinstructions could be stored in an 

internal "control" memory. Execution of a machine language instruction could then be 

caused by fetching the proper sequence of microinstructions from the control memory 

and sending them out to the data path section of the computer. A sequence of 

microinstructions that implements an instruction on the external computer is known as 

a micro-routine. The instruction set of the computer is thus determined by the set of 

micro-routines, the"microprogram," stored in the controller's memory. The control 
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unit of a microprogram-controlled computer is essentially a computer within a 

computer. 

Figure 7 is a block diagram of a micro-programmed control unit that may be used to 

implement the instruction set of the computer we described above. The heart of the 

controller is the control 32 X 24 ROM memory in which upt to 32 24-bit long 

microinstructions can be stored. Each is composed of two main fields: a 16-bit wide 

control signal field and an 8-bit wide next-address field. Each bit in the control signal 

field corresponds to one of the control signals discussed above. The next-address field 

contains bits that determine the address of the next microinstruction to be fetched 

from the control ROM. We shall see the details of how these bits work shortly. Words 

selected from the control ROM feed the microinstruction register. This 24-bit wide 

register is analogous to the outer machine's instruction register. Specifically, the 

leading 16 bits (the control-signal field) of the microinstruction register are connected 

to the control-signal lines that go to the various components of the external machine's 

data path section. 

Addresses provided to the control ROM come from a micro-counter register, which is 

analogous to the external machine's program counter. The micro-counter, in turn, 

receives its input from a multiplexer which selects from : (1) the output of an address 

ROM, (2) a current-address incrementer, or (3) the address stored in the next-address 

field of the current microinstruction. The logic that selects one of these three 

alternatives will be explained shortly. 

The controller's address ROM is fed by the outer computer's instruction register. The 

address ROM maps the op-code of the instruction currently contained in the op-code 

field of the instruction register to the starting address of the corresponding 

microroutine in the control ROM. Address zero of the address ROM contains the 

control-ROM address of the fetch routine; each other addresses in the address-ROM 

corresponds to one of the op-codes of the computer's instruction set. Table 3 shows 

the contents of the address ROM for the instruction set of our simple computer. To see 

how the address ROM works, let us assume that an ADD instruction has been fetched 

into the outer computer's instruction register. Since the op-code of the ADD 

instruction is 3, the number stored at location 3 of the address ROM (a 9) is the 

starting address in the control ROM of the microroutine that implements the ADD 

instruction. 

Details of a microinstruction's next address field are shown in Figure 8. The 5-bit 

CRJA (Control ROM Jump Address) sub-field holds a microinstruction address. Thus, 

the address of the next microinstruction may be obtained from the current 

microinstruction. This permits branching to other sections within the microprogram. 
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The combination of the MAP bit, the CD (condition) bit, and the negative flag from 

the accumulator of the external machine provide input to the logic that feeds the select 

lines of the multiplexer and thereby determine how the address of the next 

microinstruction will be obtained. 

If the MAP bit is one, the logic attached to the multiplexer's select lines produces a 01 

which selects the address ROM. Therefore, the address of the micro-routine 

corresponding to the instruction in the outer machine's instruction register will be 

channeled to the control ROM. It should be clear that the MAP bit must be set in the 

last microinstruction of the "fetch" micro-routine, since it is at that moment that we 

want the newly-fetched instruction to be executed. 

If the MAP bit is zero and the CD bit is zero, (unconditional branch), the multiplexer 

logic produces a 10, which selects the CRJA field of the current instruction. 

Therefore, the next instruction will come from the address contained in the current 

instruction's next-address field. With MAP=0 and CD=1 (conditional branch), the 

logic that feeds the multiplexer will produce either a 00 or a 10, depending on the 

value of the negative flag. If the flag is set, it is a 10, which selects the jump address 

contained in the current microinstruction. If the negative flag is cleared, the select 

lines to the multiplexer receive a 00, which causes the incrementer to be selected. The 

next microinstruction will come from the next address in sequence. It should be 

noticed that with this scheme, if we are not doing branching, the CRJA field should 

contain the address of the next microinstruction and the CD bit should be cleared. 

This will cause "branch to the next microinstruction" to occur. The one exception to 

this rule is the case of the last microinstruction within a micro-routine. Normally we 

would then want to branch back to the "fetch" micro-routine. Since this routine starts 

at control-ROM location 00000, that address should be contained in the CRJA field 

and CD should be 0. 

The HLT bit is used to terminate execution. If it is set, the clock that synchronizes 

activities within the entire machine is stopped. 

Notice that the micro-counter is triggered by a rising clock edge, and the 

microinstruction register by a falling edge. Thus, we see that on each positive edge, 

the micro-counter receives the address of the microinstruction and presents it to the 

control ROM, which has until the next negative edge to output the addressed control 

word to the microinstruction register. Since all operation in the data path section are 

positive-edge triggered, there is adequate time for the signals specified in the control 

word contained in the microinstruction register to go out to all sections of the external 

machine. The sequence of latching the address of microinstruction i+1 into the micro-

counter while microinstruction i executes (positive edge) and then presenting the 
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control word of microinstruction i+1 to the microinstruction register (negative edge) 

continues until a set HLT bit stops the clock. 

Table 4 shows a microprogram which, when loaded into the control ROM, will 

implement the instruction set of the computer we have been describing. For each 

microinstruction, the control ROM address has been expressed in hexadecimal, and 

the contents in binary. The order of the bits in the control signal field is the same as 

that shown in table 2: IP, LP, EP, LM, R, W, LD, ED, LI, EI, LA, EA, A, S, EU, LB, 

reading from left to right. The last four columns of table 4 express the status of the 

CD, MAP, and HLT bits, and the Control ROM Jump Address, expressed in 

hexadecimal. In order to clarify how the microprogram works, a description is now 

given of the "fetch" and JN (jump on negative) micro-routines. 

The "fetch" micro-routine occupies control ROM addresses 0, 1, and 2. The active EP 

and LM control-signal bits in its first microinstruction cause a register transfer from 

the program counter to the memory address register to occur. The MAR will now 

contain the address in RAM of the next instruction. Since CD and MAP are both zero 

(unconditional branch), the next microinstruction will come from the address stored in 

the CRJA field (01) -- the next consecutive location. The microinstruction stored at 

that location has only the R bit active. Thus, the word stored in the memory location 

being accessed by the MAR (presumably the next instruction ) will be gated to the 

Memory Data Register (MDR). The zeroes in CD and MAP again cause the 

microinstruction to be fetched from the address specified in the CRJA field, (02). 

Active control signal bits for that microinstruction are ED, LI, and IP. The first two 

transfer the word in the MDR to the Instruction Register, and the last increments the 

program counter. The new instruction is safely in the IR, and the PC is pointing to the 

next instruction in sequence. We have completed an instruction fetch. Since the MAP 

field in the last microinstruction of this "fetch" micro-routine is equal to 1, the address 

of the next microinstruction is determined by the address ROM, which, in turn, 

depends upon the opcode of the instruction that has just been loaded into the 

instruction register. 

When the JN instruction is executed, control is supposed to be transferred to the 

address specified by the least significant eight bits of the number contained in the 

instruction register if the negative flag is set. If the negative flag is not set, execution 

should continue with the next instruction in sequence. Let us see how the micro-

routine stored at control-ROM locations 0F, 10, and 11 implement this conditional 

jump. In the first microinstruction, none of the control signal bits is set. Thus, nothing 

will occur in the data path section of the computer. However, the fact that the CD bit 

is set means that IF THE NEGATIVE FLAG IS SET, the next microinstruction will 

be fetched from the control-ROM address specified in the CRJA field (11 in this 
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case). The microinstruction stored at that location has the EI and LP control signal bits 

set. Thus, the contents of the instruction register (the least significant eight bits) will 

be transferred to the program counter. The zeroes stored in the CD and MAP bits 

cause the next microinstruction to be fetched from the address contained in the CRJA 

field -- a 00 in this case. This is the start of the "fetch"micro-routine. Thus we see that 

if the negative flag is set, the JN micro-routine places the jump address in the program 

counter and transfer to the fetch routine. When that fetch is performed, control will 

have been transferred to the jump address. 

If, on the other hand, the negative flag is NOT SET when the JN micro-routine 

executes, then the set CD bit in its first microinstruction causes the current address 

stored in the micro-counter to be incremented. Thus, the next microinstruction would 

be fetched from location 10. That microinstruction also has no active control signals 

bits, but with CD=0 and CRJA=00, the next microinstruction will be the first one in 

the "fetch" routine. Notice that in this case, the JN instruction simply returns us to the 

next fetch. Since the program counter has not been altered, that fetch will be from the 

next sequential memory location, as usual.  

  

Hardwired vs. Micro-programmed Computers 

It should be mentioned that most computers today are micro-programmed. The reason 

is basically one of flexibility. Once the control unit of a hard-wired computer is 

designed and built, it is virtually impossible to alter its architecture and instruction set. 

In the case of a micro-programmed computer, however, we can change the computer's 

instruction set simply by altering the microprogram stored in its control memory. In 

fact, taking our basic computer as an example, we notice that its four-bit op-code 

permits up to 16 instructions. Therefore, we could add seven more instructions to the 

instruction set by simply expanding its microprogram. To do this with the hard-wired 

version of our computer would require a complete redesign of the controller circuit 

hardware. 

Another advantage to using micro-programmed control is the fact that the task of 

designing the computer in the first place is simplified. The process of specifying the 

architecture and instruction set is now one of software (micro-programming) as 

opposed to hardware design. Nevertheless, for certain applications hard-wired 

computers are still used. If speed is a consideration, hard-wiring may be required 

since it is faster to have the hardware issue the required control signals than to have 

a "program" do it. 

 



24 
 

Prepared by:- Anwar Bari 

FIGURES: 

  

Figure 1. A Simple Single-Bus Basic Computer.  
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Figure 2. A Block diagram of the Basic Computer's Hard-wired Control unit  

   

  

 

Figure 3. The Internal Organization of the Ring Counter  
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Figure 4. The Internal Organization of the Hard-wired Instruction Decoder  
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Figure 5. The Internal Organization of the Hard-wired Control Matrix  
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  IP = T2  

    W = T5*STA  

    LP = T3*JMP + T3*NF*JN  

    LD = T4*STA  

    LA = T5*LDA + T4*ADD + T4*SUB  

    EA = T4*STA + T3*MBA  

    EP = T0  

    S = T3*SUB  

    A = T3*ADD  

    LI = T2  

    LM = T0 + T3*LDA + T3*STA  

    ED = T2 + T5*LDA  

    R = T1 + T4*LDA  

    EU = T3*ADD+T3*SUB  

    EI = T3*LDA + T3*STA + T3*JMP + T3*NF*JN  

    LB = T3*MBA 

Figure 6.  The logical equations required for each of the hardwired control 

signals on the basic computer.  The machine's control matrix is designed from 
these equations.  
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Figure 7. A Microprogrammed Control Unit for the Simple Computer  
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TABLES: 

Table 1. An Instruction Set For The Basic Computer 

Instruction   Op-

Code      Execution       Register                Ring   Active Control  
Mnemonic                   Action          Transfers               Pulse  Sig

nals  

----------------------------------------------------------------------------------------------------------------------------- -------  
LDA               1           ACC<--(RAM)     1. MAR <-- IR         3     EI, 

LM  

(Load ACC)                                    2. MDR <-- RAM(MAR)   4     R  
                                              3. ACC <-- MDR        5     ED, 

LA 

STA               2          (RAM) <--ACC     1. MAR <-- IR         3     EI, 

LM  
(Store ACC)                                   2. MDR <-- ACC        4     EA, 

LD  
                                              3. RAM(MAR) <-- MDR   5     W 

ADD               3          ACC <-- ACC + B  1. ALU <-- ACC + B    3     A  
(Add B to ACC)                                2. ACC <-- ALU        4     EU, 

LA 

SUB               4          ACC <-- ACC - B  1. ALU <-- ACC - B    3     S  
(Sub. B from ACC)                             2. ACC <-- ALU        4     EU, 

LA 

MBA               5          B <-- ACC        1. B <-- A            3     EA, 

LB  
(Move ACC to B) 

JMP               6          PC <-- RAM       1. PC <-- IR          3     EI, 

LP  

(Jump to  
 Address) 
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JN                7          PC <-- RAM       1. PC <-- IR          3     NF: 

EI, LP  

(Jump if                     if negative         if NF set  
 Negative)                   flag is set 

HLT              8-15        Stop clock 

"Fetch"                      IR <-- Next      1. MAR <-- PC         0     EP, 

LM  

                             Instruction      2. MDR <-- RAM(MAR)   1     R  
                                              3. IR <-- MDR         2    ED, 

LI, IP  

  

Table 2. A Matrix of Times at which Each Control Signal Must Be Active in Order to  
Execute the Hard-wired Basic Computer's Instructions 

Control Signal: IP  LP  EP  LM  R  W  LD  ED  LI  EI  LA  EA  A  S  EU  LB  

Instruction:  

-----------------------------------------------------------------------------  

"Fetch"         T2      T0  T0  T1        T2  T2  

LDA                         T3  T4        T5      T3  T5  

STA                         T3     T5 T4          T3      T4  

MBA                                                       T3            T3  

ADD                                                   T4      T3    T4  

SUB                                                   T4         T3 T4  

JMP                 T3                            T3  

JN                 T3*NF                         T3*NF  

   

   

  

Table 3. The Microprogrammed Basic Computer's Address ROM 

Instruction  Address-ROM Address   Address-ROM Contents  

Mnemonic     (Instruction Op-Code) (Control-ROM Micro-  

                                    Routine Start Address)  

-------------------------------------------------------------------------------  

"Fetch"              0                     00  

LDA                  1                     03  

STA                  2                     06  

ADD                  3                     09  

SUB                  4                     0B  
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MBA                  5                     0D  

JMP                  6                     0E  

JN                   7                     0F  

Available for        8-E                   12-1E  

New Instructions  

HLT                  F                     1F  

   

  

Table 4. The Microprogram that Implements the Basic Computer's Instruction 

Set 

Microroutine  Address-ROM  Micro-       Control 

Signals:   CD     MAP   HLT   Address of      Comment  
Name          Address      Instruction  ILELRWLELELEASEL   bit    bit   bit  

 Next Micro-  
(Mnemonic)   (Op-

code)     Address       PPPM  DDIIAA  UB                     Instruction  
-----------------------------------------------------------------------------

--------------------------------------------------  
"Fetch"          0           00         0011000000000000    0     0     0    

   01       Next CR Address = 01  
                             01         0000100000000000    0     0     0    

   02       Next CR Address = 02  
                             02         1000000110000000    0     1     0    

   xx       Get CR Address from Address ROM 

LDA              1           03         0010000001000000    0     0     0    

   04       Nexr CR Address = 04  
                             04         0000100000000000    0     0     0    

   05       Next CR Address = 05  
                             05         0000000100100000    0     0     0    

   00       Next CR Address = 00 (Fetch) 

STA              2           06         0010000001000000    0     0     0    

   07       Next CR Address = 07  
                             07         0000001000010000    0     0     0    

   08       Next CR Address = 08  
                             08         0000010000000000    0     0     0    

   00       Next CR Address = 00 (Fetch) 

ADD              3           09         0000000000001000    0     0     0    

   0A       Next CR Address = 0A  
                             0A         0000000000100010    0     0     0    

   00       Next CR Address = 00 (Fetch) 
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SUB              4           0B         0000000000000100    0     0     0    

   0C       Next CR Address = 0C  
                             0C         0000000000100010    0     0     0    

   00       Next CR Address = 00 (Fetch) 

MBA              5           0D         0000000000010001    0     0     0    

   00       Next CR Address is 00 (Fetch) 

JMP              6           0E         0100000001000000    0     0     0    

   00       Change PC; next CR Address is 00 (Fetch) 

JN               7           0F         0000000000000000    1     0     0    

   11       NF=0: INC CRJA; NF=1: Next CR Address = 11  
                             10         0000000000000000    0     0     0    

   00       Next CR Address = 00 (Fetch)  
                             11         0100000001000000    0     0     0    

   00       Change PC; next CR Address is 00 (Fetch) 

Available for   8-E          12-

1E                                                       New 

microinstructions can be added here 

HLT              F           1F         0000000000000000    0     0     1    

   xx       Stop Clock  

  

 

 


